通过仇恨语音检测,民意调查预测,参与预测和协调宣传检测,在社交媒体文本中检测和标记姿势强烈激励。今天的最佳神经姿势探测器需要大量的培训数据,这难以策划,鉴于社交媒体文本的快速变化和用户撰写的问题。社交网络的同性恋特性提供了强大的粗粒式用户级姿态信号。但是,发动机级姿势检测的半监督方法未能正确地利用同一性。鉴于此,我们呈现出新的半监督姿态探测器。沙子从很少有标记的推文开始。它构建了促进推文的多个深度特色视图。它还使用来自社交网络的远程监督信号,为组件学习者提供代理丢失信号。我们准备了两个新的推文数据集,其中包括来自两个人口统计数据(美国和印度)的政治上有关的236,000多次推文,以超过87,000名用户,他们的追随者 - 追随图,以及由语言学家注释的超过8,000名推文。 Sands在美国(印度)的数据集上实现了0.55(0.49)的宏观F1得分,表现出17个基线(包括沙子的变体),特别是对于少数群体立场标签和嘈杂的文本。砂岩的许多消融实验解开了文本和网络传播的姿态信号的动态。
translated by 谷歌翻译
Dataset Distillation (DD), a newly emerging field, aims at generating much smaller and high-quality synthetic datasets from large ones. Existing DD methods based on gradient matching achieve leading performance; however, they are extremely computationally intensive as they require continuously optimizing a dataset among thousands of randomly initialized models. In this paper, we assume that training the synthetic data with diverse models leads to better generalization performance. Thus we propose two \textbf{model augmentation} techniques, ~\ie using \textbf{early-stage models} and \textbf{weight perturbation} to learn an informative synthetic set with significantly reduced training cost. Extensive experiments demonstrate that our method achieves up to 20$\times$ speedup and comparable performance on par with state-of-the-art baseline methods.
translated by 谷歌翻译
Deep neural networks have emerged as the workhorse for a large section of robotics and control applications, especially as models for dynamical systems. Such data-driven models are in turn used for designing and verifying autonomous systems. This is particularly useful in modeling medical systems where data can be leveraged to individualize treatment. In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences. Such knowledge is often available or can often be distilled into a (possibly black-box) model $M$. For instance, the unicycle model for an F1 racing car. In this light, we consider the following problem - given a model $M$ and state transition dataset, we wish to best approximate the system model while being bounded distance away from $M$. We propose a method to guarantee this conformance. Our first step is to distill the dataset into few representative samples called memories, using the idea of a growing neural gas. Next, using these memories we partition the state space into disjoint subsets and compute bounds that should be respected by the neural network, when the input is drawn from a particular subset. This serves as a symbolic wrapper for guaranteed conformance. We argue theoretically that this only leads to bounded increase in approximation error; which can be controlled by increasing the number of memories. We experimentally show that on three case studies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform to specified $M$ models (each encoding various constraints) with order-of-magnitude improvements compared to the augmented Lagrangian and vanilla training methods.
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
While large pretrained language models (PLMs) demonstrate incredible fluency and performance on many natural language tasks, recent work has shown that well-performing PLMs are very sensitive to what prompts are feed into them. Even when prompts are semantically identical, language models may give very different answers. When considering safe and trustworthy deployments of PLMs we would like their outputs to be consistent under prompts that mean the same thing or convey the same intent. While some work has looked into how state-of-the-art PLMs address this need, they have been limited to only evaluating lexical equality of single- or multi-word answers and do not address consistency of generative text sequences. In order to understand consistency of PLMs under text generation settings, we develop a measure of semantic consistency that allows the comparison of open-ended text outputs. We implement several versions of this consistency metric to evaluate the performance of a number of PLMs on paraphrased versions of questions in the TruthfulQA dataset, we find that our proposed metrics are considerably more consistent than traditional metrics embodying lexical consistency, and also correlate with human evaluation of output consistency to a higher degree.
translated by 谷歌翻译
New technologies and the availability of geospatial data have drawn attention to spatio-temporal biases present in society. For example: the COVID-19 pandemic highlighted disparities in the availability of broadband service and its role in the digital divide; the environmental justice movement in the United States has raised awareness to health implications for minority populations stemming from historical redlining practices; and studies have found varying quality and coverage in the collection and sharing of open-source geospatial data. Despite the extensive literature on machine learning (ML) fairness, few algorithmic strategies have been proposed to mitigate such biases. In this paper we highlight the unique challenges for quantifying and addressing spatio-temporal biases, through the lens of use cases presented in the scientific literature and media. We envision a roadmap of ML strategies that need to be developed or adapted to quantify and overcome these challenges -- including transfer learning, active learning, and reinforcement learning techniques. Further, we discuss the potential role of ML in providing guidance to policy makers on issues related to spatial fairness.
translated by 谷歌翻译
Aspect Based Sentiment Analysis is a dominant research area with potential applications in social media analytics, business, finance, and health. Prior works in this area are primarily based on supervised methods, with a few techniques using weak supervision limited to predicting a single aspect category per review sentence. In this paper, we present an extremely weakly supervised multi-label Aspect Category Sentiment Analysis framework which does not use any labelled data. We only rely on a single word per class as an initial indicative information. We further propose an automatic word selection technique to choose these seed categories and sentiment words. We explore unsupervised language model post-training to improve the overall performance, and propose a multi-label generator model to generate multiple aspect category-sentiment pairs per review sentence. Experiments conducted on four benchmark datasets showcase our method to outperform other weakly supervised baselines by a significant margin.
translated by 谷歌翻译
The SNMMI Artificial Intelligence (SNMMI-AI) Summit, organized by the SNMMI AI Task Force, took place in Bethesda, MD on March 21-22, 2022. It brought together various community members and stakeholders from academia, healthcare, industry, patient representatives, and government (NIH, FDA), and considered various key themes to envision and facilitate a bright future for routine, trustworthy use of AI in nuclear medicine. In what follows, essential issues, challenges, controversies and findings emphasized in the meeting are summarized.
translated by 谷歌翻译
Existing regulations prohibit model developers from accessing protected attributes (gender, race, etc.), often resulting in fairness assessments on populations without knowing their protected groups. In such scenarios, institutions often adopt a separation between the model developers (who train models with no access to the protected attributes) and a compliance team (who may have access to the entire dataset for auditing purpose). However, the model developers might be allowed to test their models for bias by querying the compliance team for group fairness metrics. In this paper, we first demonstrate that simply querying for fairness metrics, such as statistical parity and equalized odds can leak the protected attributes of individuals to the model developers. We demonstrate that there always exist strategies by which the model developers can identify the protected attribute of a targeted individual in the test dataset from just a single query. In particular, we show that one can reconstruct the protected attributes of all the individuals from O(Nk log n/Nk) queries when Nk<<n using techniques from compressed sensing (n: size of the test dataset, Nk: size of smallest group). Our results pose an interesting debate in algorithmic fairness: should querying for fairness metrics be viewed as a neutral-valued solution to ensure compliance with regulations? Or, does it constitute a violation of regulations and privacy if the number of queries answered is enough for the model developers to identify the protected attributes of specific individuals? To address this supposed violation, we also propose Attribute-Conceal, a novel technique that achieves differential privacy by calibrating noise to the smooth sensitivity of our bias query, outperforming naive techniques such as Laplace mechanism. We also include experimental results on the Adult dataset and synthetic data (broad range of parameters).
translated by 谷歌翻译
已经开发了增强学习(RL)技术来优化工业冷却系统,与传统的启发式政策相比,提供了可观的节能。工业控制中的一个主要挑战涉及由于机械限制而在现实世界中可行的学习行为。例如,某些操作只能每隔几个小时执行一次,而其他动作可以更频繁地采取。如果没有广泛的奖励工程和实验,RL代理可能无法学习机械的现实操作。为了解决这个问题,我们使用层次结构的增强学习与多种根据操作时间尺度控制动作子集的代理。我们的分层方法可以在现有基线上节省能源,同时在模拟的HVAC控制环境中保持在安全范围内的限制(例如操作冷却器)。
translated by 谷歌翻译